33 research outputs found

    Are rotating strange quark stars good sources of gravitational waves?

    Full text link
    We study the viscosity driven (Jacobi-like) bar mode instability of rapidly rotating strange stars in general relativity. A triaxial, "bar shaped" compact star could be an efficient source of continuous wave gravitational radiation in the frequency range of the forthcoming interferometric detectors. We locate the secular instability point along several constant baryon mass sequences of uniformly rotating strange stars described by the MIT bag model. Contrary to neutron stars, strange stars with T/|W| (the ratio of the rotational kinetic energy to the absolute value of the gravitational potential energy) much lower than the corresponding value for the mass-shed limit can be secularly unstable to bar mode formation if shear viscosity is high enough to damp out any deviation from uniform rotation. The instability develops for a broad range of gravitational masses and rotational frequencies of strange quark stars. It imposes strong constraints on the lower limit of the frequency at the innermost stable circular orbit around rapidly rotating strange stars. The above results are robust for all linear self-bound equations of state assuming the growth time of the instability is faster than the damping timescale. We discuss astrophysical scenarios where triaxial instabilities (r-mode and viscosity driven instability) could be relevant in strange stars described by the standard MIT bag model of normal quark matter. Taking into account actual values of viscosities in strange quark matter and neglecting the magnetic field we show that Jacobi-like instability cannot develop in any astrophysicaly interesting temperature windows. The main result is that strange quark stars described by the MIT bag model can be accelerated to very high frequency in Low Mass X-ray binaries if the strange quark mass is ~ 200 MeV or higher.Comment: 15 pages, 10 figures, to appear in Astronomy and Astrophysic

    Eccentricities of Double Neutron Star Binaries

    Full text link
    Recent pulsar surveys have increased the number of observed double neutron stars (DNS) in our galaxy enough so that observable trends in their properties are starting to emerge. In particular, it has been noted that the majority of DNS have eccentricities less than 0.3, which are surprisingly low for binaries that survive a supernova explosion that we believe imparts a significant kick to the neutron star. To investigate this trend, we generate many different theoretical distributions of DNS eccentricities using Monte Carlo population synthesis methods. We determine which eccentricity distributions are most consistent with the observed sample of DNS binaries. In agreement with Chaurasia & Bailes (2005), assuming all double neutron stars are equally as probable to be discovered as binary pulsars, we find that highly eccentric, coalescing DNS are less likely to be observed because of their accelerated orbital evolution due to gravitational wave emission and possible early mergers. Based on our results for coalescing DNS, we also find that models with vanishingly or moderately small kicks (sigma < about 50 km/s) are inconsistent with the current observed sample of such DNS. We discuss the implications of our conclusions for DNS merger rate estimates of interest to ground-based gravitational-wave interferometers. We find that, although orbital evolution due to gravitational radiation affects the eccentricity distribution of the observed sample, the associated upwards correction factor to merger rate estimates is rather small (typically 10-40%).Comment: 9 pages, 8 figures, accepted by ApJ. Figures reduced and some content changed, references adde
    corecore